299A Poster - 03. Evolution
Thursday April 07, 2:00 PM - 4:00 PM

A tandem duplication in Drosophila melanogaster shows enhanced expression beyond the gene copy number


Authors:
David Loehlin; Caleigh Paster; Jeremiah Kim

Affiliation: Williams College

Keywords:
c. chromosome structural variation; p. cis-regulatory logic

Tandem duplicated genes are common features of genomes, but the phenotypic consequences of their origins are not well understood. It is not known whether a simple doubling of gene expression should be expected, or else some other expression outcome. We describe an experimental framework using engineered deletions to assess any contribution of locally-acting cis- and globally-acting trans-regulatory factors to expression interactions of particular tandem duplicated genes. Acsx1L (CG6300) and Acsx1R (CG11659) are tandem duplicates of a putative acyl-CoA synthetase gene found in D. melanogaster. Experimental deletions of the duplicated segments were used to investigate whether the presence of one tandem duplicated block influences the expression of its neighbor. Acsx1L, the gene in the left block, shows much higher expression than either its duplicate Acsx1R or the single Acsx1 in D. simulans. Acsx1L expression decreases drastically upon deleting the right-hand duplicated block. Crosses among wildtype and deletion strains show that high tandem expression is primarily due to cis-acting interactions between the duplicated blocks. Sequence and phylogenetic analysis suggest that the duplication rose to fixation in D. melanogaster and has been subject to extensive gene conversion. Some strains actually carry three tandem copies, yet strains with three Acsx1 copies do not have higher expression levels than strains with two. Surveys of tandem duplicate expression have typically not found the expected twofold increase in expression. This study suggests that cis-regulatory interactions between duplicated blocks could be responsible for this trend.