400V Poster Online - Virtual Posters
Tuesday June 07, 11:00 AM - 3:00 PM

Imputation of 3D genome structure by genetic-epigenetic interaction modeling in mice


Authors:
Lauren Kuffler; Daniel Skelly; Anne Czechanski; Steven Munger; Christopher Baker; Laura Reinholdt; Gregory Carter

Affiliation: Jackson Laboratory, Bar Harbor, ME

Keywords:
Complex traits

Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions has previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic-epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic-epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin openness are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the 3D domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF binding complex, providing an opportunity for statistical inference of TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of three-dimensional chromatin structure.